Producing Oil & Gas Shales

Tad Patzek, UT Austin
July 24, 2011
Acknowledgement

This research has been supported in part by a grant from the Sloan Foundation to the Bureau of Economic Geology at the University of Texas in Austin and Rice University in Houston, Texas.
Motto

Errors using inadequate data are much less than those using no data at all.

Charles Babbage, Mathematician, 1792 – 1871
Barnett Shale

Source: Newark Energy, LLC
Summary of Conclusions

- Technology matters: Newer wells are better producers

 From the plots of sorted cumulative gas production in 9 Barnett shale counties, it is clear that the newer wells are generally more productive, sometimes significantly, than the older wells.

- In some wells, there is significant production of the hydrocarbon gas condensate and/or liquid hydrocarbons.

- Newer wells in general produce more water, some a lot more.

- High water production is symptomatic of hydrofracturing into the water-rich strata just above and perhaps below the shale.
What you will see

- You will see 9 slides with cumulative gas production in Bcf, versus the square root of time on production in months (down-times removed), sorted in increasing order from the left to right.

- The production curves are color-coded according to starting dates. In general, the newer purple wells produce more gas faster than the older wells.

- Next, you will see 9 slides with cumulative condensate production in thousands of barrels, versus the square root of time on production.

- Finally, you will see 9 slides with cumulative water production in thousands of barrels vs. square root of time on production.

- In some wells, water production really takes off.
Cumulative gas in Tarrant county
Cumulative gas in Johnson county

Cumulative gas production, Bcf

√month

- p.7/32
Cumulative gas in Denton county
Cumulative gas in Wise county

Cumulative gas production, Bcf
Cumulative gas in Parker county

![3D graph showing cumulative gas production, Bcf over square root of months, with years 1990 to 2010 indicated on the color scale.](image)
Cumulative gas in Hood county

Cumulative gas production, Bcf

\[\sqrt{\text{month}} \]

- p.11/32
Cumulative gas in Hill county
Cumulative gas in Erath county

Cumulative gas production, Bcf

√month

[Graph showing cumulative gas production over time and years]
Cumulative gas in Jack county

Cumulative gas production, Bcf

√month
Cumulative HC liquid in Tarrant

Cumulative oil production, 10^3 bbl

- p.15/32
Cumulative HC liquid in Johnson
Cumulative HC liquid in Denton

Cumulative oil production, 10^3 bbl

√month

Cumulative HC liquid in Denton

Cumulative oil production, 10^3 bbl

√month
Cumulative HC liquid in Wise

Cum oil production, 10^3 bbl

√month
Cumulative HC liquid in Parker

Cum oil production, 10^3 bbl

√month

0 5 10 15 20 25

0 5 10 15 20 25

Cumulative HC liquid in Hood

Cumulative oil production, 10^3 bbl
Cumulative HC liquid in Hill

Cum oil production, 10^3 bbl
Cumulative HC liquid in Erath

Cum oil production, 10^3 bbl

$\sqrt{\text{month}}$
Cumulative water in Tarrant county

Cumulative water production, 10^3 bbl

√month

- p.24/32
Cumulative water in Johnson county

Cumulative water production, 10^3 bbl

$\sqrt{\text{month}}$
Cumulative water in Denton county

Cumulative water production, 10^3 bbl

√month

- p.26/32
Cumulative water in Parker county

Cumulative water production, 10^3 bbl

$\sqrt{\text{month}}$

0 5 10 15 500 1000
Cumulative water in Hill county

Cumulative water production, 10^3 bbl

√month

- p.30/32
Cumulative water in Erath county

Cumulative water production, 10^3 bbl

√month
Cumulative water in Jack county

Cumulative water production, 10^3 bbl