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Abstract. In this paper, we model water injection through a growing vertical hydrofracture pen-
etrating a low-permeability reservoir. The results are useful in oilfield waterflood applications and
in liquid waste disposal through reinjection. Using Duhamel’s principle, we extend the Gordeyev
and Entov (1997) self-similar 2D solution of pressure diffusion from a growing fracture to the case
of variable injection pressure. The flow of water injected into a low-permeability rock is almost
perpendicular to the fracture for a time sufficiently long to be of practical interest. We revisit Carter’s
model of 1D fluid injection (Howard and Fast, 1957) and extend it to the case of variable injection
pressure. We express the cumulative injection through the injection pressure and effective fracture
area. Maintaining fluid injection above a reasonable minimal value leads inevitably to fracture growth
regardless of the injector design and the injection policy. The average rate of fracture growth can be
predicted from early injection. A smart injection controller that can prevent rapid fracture growth is
needed.

Key words: optimal control, hydrofracture growth, waterflood, transient flow, generalized Carter
model, self-similar solution.

Nomenclature

A fracture area, m2.
k absolute rock permeability, md, 1 md ≈ 9.87 × 10−16 m2.
krw relative permeability of water.
pi initial pressure in the formation outside the fracture, Pa.
pinj injection pressure, Pa.
q injection rate, l/Day.
Q cumulative injection, l.
v superficial leak-off velocity, m/Day.
w fracture width, m.
αw hydraulic diffusivity, m2/Day.
µ viscosity, cp.
φ porosity.
ϕ, θ dimensionless elliptic coordinates.
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1. Introduction

In this paper, we model water injection through a horizontally growing vertical
hydrofracture totally penetrating a horizontal, homogeneous, isotropic and low-
permeability reservoir initially at constant pressure. More specifically, we consider
the soft diatomaceous rock with roughly a tenth of millidarcy permeability. Diat-
omaceous reservoirs are finely layered and each major layer is usually homogen-
eous, see (Zwahlen and Patzek, 1997a; Patzek and Silin, 1998) over a distance of
tens of meters.

Our long-term goal is to design a field-wide integrated system of waterflood
surveillance and control. Such a system consists of Waterflood Analyzer (De and
Patzek, 1999) software integrated with a network of individual injector controllers.
This paper focuses on the design of the injection controller; in the first part we
develop the controller model, which is used in the second part to design several
optimal controllers.

We consider the process of hydrofracture growth on a large time interval; there-
fore, we assume that at each time the injection pressure is uniform inside the
fracture. We use modeling to relate the cumulative fluid injection and the injection
pressure. To obtain the hydrofracture area, however, we rely either on independent
measurements or on an analysis of injection rate – injection pressure data via in-
version of the controller model. We do not yet rely on the various fracture growth
models because they are insufficient. Instead, we analyze the mass of injected fluid
and determine the fracture status juxtaposing the injected liquid volume with the
leak-off rate at a given fracture surface area. The inversion of the model provides an
effective fracture area, rather than its geometric dimensions. However, it is exactly
the parameter needed as an input to the controller. After calibration, the inversion
produces the desired input at no additional cost.

Patzek and Silin (1998) have analyzed 17 waterflood injectors in the Middle
Belridge diatomite (CA, USA), three steam injectors in the South Belridge diat-
omite, as well as 44 injectors in a Lost Hills diatomite waterflood. The field data
show that the injection hydrofractures grow with time. An injection rate or pressure
that is too high may dramatically increase the fracture growth rate and eventu-
ally leads to a catastrophic fracture extension and unrecoverable water channeling
between an injector and a producer. In order to avoid fatal reservoir damage, smart
injection controllers should be deployed.

Field demonstrations of hydrofracture propagation and geometry are scarce,
Kuo et al. (1984) proposed a fracture extension mechanism to explain daily well-
head injection pressure behavior observed in the Stomatito Field A fault block in
the Talara Area of the Northwest Peru. They have quantified the periodic increases
in injection pressure, followed by abrupt decreases, in terms of Carter’s theory
(Howard and Fast, 1957) of hydrofracture extension. Patzek (1992) described sev-
eral examples of injector-producer hydrofracture linkage in the South Belridge
diatomite, CA, and quantified the discrete extensions of injection hydrofractures
using the linear transient flow theory and linear superposition method.
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Vinegar et al. (1992) used three remote ‘listening’ wells with multiple cemented
geophones to triangulate the microseismic events during the hydrofracturing of a
well in a steam drive pilot in Section 29 of the South Belridge diatomite. Ilderton
et al. (1996) used the same geophone array to triangulate microseismicity dur-
ing hydrofracturing of two steam injectors nearby. In addition, they corrected the
triangulation for azimuthal heterogeneity of the rock by using conical waves. Mul-
tiple fractured intervals, each with very different lengths of hydrofracture wings,
as well as an unsymmetrical hydrofracture, have been reported. An up-to-date
overview of hydrofracture diagnostics methods has been presented in Warpinski
(1996).

To date, perhaps the most complete images of hydrofracture shape and growth
rate in situ have been presented by Kovscek et al. (1996a,b). They have obtained
detailed time-lapse images of two injection hydrofractures in the South Belridge
diatomite, Section 29, Phase II steam drive pilot. Using a simplified finite element
flow simulator, Kovscek et al. (1996a,b) calculated the hydrofracture shapes from
the time-lapse temperature logs in seven observation wells. For calibration, they
used the pilot geology, overall steam injection rates and pressures, and the ana-
lysis of Ilderton et al. (1996) detailing the azimuth and initial extent of the two
hydrofractures.

Wright and Conant (1995), Wright et al. (1997) have used surface and downhole
tiltmeters to map the orientation and sizes of vertical and horizontal hydrofractures.
They observed fracture reorientation on dozens of staged fracture treatments in
several fields, and related it to reservoir compaction caused by insufficient and
nonuniform water injection. By improving the tiltmeter sensitivity, Wright et al.
(1997) have been able to determine fracture azimuths and dips down to 3,000 m.
Most importantly, they have used downhole tiltmeters in remote observation wells
to determine hydrofracture dimensions, height, width and length. This approach
might be used in time-lapse monitoring of hydrofracture growth.

Recently, Ovens et al. (1998) analyzed the growth of water injection hydrofrac-
tures in a low-permeability chalk field. Water injection above fracture propagation
pressure is used there to improve oil recovery. Ovens et al., have calculated fracture
growth with Koning’s (Koning, 1985) and Ovens-Niko (Ovens et al., 1998) 1D
models. Their conclusions are similar to those in this paper. Most notably, they
report hydrofractures tripling in length in 800 days.

Numerous attempts have been undertaken to model fracture propagation both
numerically and analytically. We just note the early fundamental papers (Zheltov
and Khristianovich, 1955; Biot, 1956, 1972; Barenblatt, 1959a,b,c, 1961), and refer
the reader to a monograph (Valko and Economides, 1995) for further references.

We do not attempt to characterize the geometry of the hydrofracture. In the mass
balance equation presented below, the fracture area and the injection pressure and
rate are most important. Because the hydrofracture width is much less than its two
other dimensions and the characteristic width of the pressure propagation zone, we
neglect it when we derive and solve the pressure diffusion equation. At the same
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time, we assume a constant effective hydrofracture width when we account for the
fracture volume in the fluid mass balance.

This paper is organized as follows. First, we present a 2D model of pressure
diffusion from a growing fracture. We apply the self-similar solution of the tran-
sient pressure equation by Gordeyev and Entov (Gordeyev and Entov, 1997). This
solution is obtained under the assumption of constant injection pressure. Using
Duhamel’s principle, see for example (Tikhonov and Samarskii, 1963), we gener-
alize the Gordeyev and Entov solution to admit variable injection pressure, which
of course is not self-similar. We use this solution to conclude that the flow of
water injected into a low-permeability formation preserves its linear structure for a
long time. Moreover, in the diatomite waterfloods, the flow is almost strictly linear
because the distance between neighboring wells in a staggered line drive is about
45 m, and this is approximately equal to one half of the fracture length.

Therefore, we restrict our analysis to 1D linear flow, noting that in a higher
permeability formation the initially linear flow may transform into a pseudo-radial
one at a much earlier stage. In this context, we revisit Carter’s theory (Howard and
Fast, 1957) of fluid injection through a growing hydrofracture. Aside from the mass
balance considerations, we incorporate variable injection pressure into our model.
In particular, a new simple expression is obtained for the cumulative fluid injection
as a function of the variable injection pressure and the hydrofracture area. Fracture
growth is expressed in terms of readily available field measurements. The results
are presented, we hope, in a clear and concise form.

2. Theory

2.1. PRESSURE FIELD IN 2D

Let us analyze pressure diffusion in 2D using the self-similar solution by Gordeyev
and Entov (1997), obtained under the assumption of constant injection pressure.
Since this solution as represented by Equations (2.5) and (3.4) in (Gordeyev and
Entov, 1997) has a typo, we briefly overview the derivation and present the cor-
rect form (Equation (14) below). Using Duhamel’s principle, we generalize this
solution to admit time-dependent injection pressure.

The fluid flow is two-dimensional and it satisfies the well-known pressure dif-
fusion equation (Muskat, 1946)

∂p(t, x, y)

∂t
= αw∇2p(t, x, y), (1)

where p(t, x, y) is the pressure at point (x, y) of the reservoir at time t , αw is the
overall hydraulic diffusivity, and ∇2 is the Laplace operator. The coefficient αw
combines both the formation and fluid properties, (Zwahlen and Patzek, 1997a).

In Equation (1) we have neglected the capillary pressure. As first implied by
Rapoport and Leas (Rapoport and Leas, 1953), the following inequality determines
when capillary pressure effects are important in a waterflood
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NRL ≡
√
φ

k

µuL

krwϕγow cos θ
< 3 (2)

where u is the superficial velocity of water injection, and L is the macroscopic
length of the system. In the low-permeability, porous diatomite, k ≈ 10−16 m2,
φ ≈ 0.50. u ≈ 10−7 m/s, L ≈ 10 m, krw ≈ 0.1, γow cos θ ≈ 10−3 N/m, and
µ ≈ 0.5×10−3 Pa-s. Hence the Rapoport–Leas number (Rapoport and Leas, 1953)
for a typical waterflood in the diatomite is of the order of 100, a value that is
much larger than the criterion given in Equation (2). Thus capillary pressure effects
are not important for water injection at a field scale. Of course, capillary pressure
dominates at the pore scale, determines the residual oil saturation to water, and the
ultimate oil recovery. This, however, is a completely different story (see Patzek,
2000).

To impose the boundary conditions, consider a pressure diffusion process caused
by water injection from a vertical rectangular hydrofracture totally penetrating
a homogeneous, isotropic reservoir filled with a slightly compressible fluid of
similar mobility. Assume that the fracture height does not grow with time. The
fracture width is negligible in comparison with the other fracture dimensions and
the characteristic length of pressure propagation, therefore we put it equal to zero.

Denote by L(t) the half-length of the fracture. Place the injector well on the
axis of the fracture and require the fracture to grow symmetrically with respect
to its axis. Then, it is convenient to put the origin of the coordinate system at the
center of the fracture, Figure 1.

The pressure inside the fracture is maintained by water injection and it may
depend on time. Denote the pressure in the fracture by p0(t, y), −L(t) � y � L(t).
Then the boundary-value problem can be formulated as follows: find a function
p(t, x, y) , which satisfies the differential Equation (1) for all (t, x, y), t � 0,
and (x, y) outside the line segment {−L(t) � y � L(t), x = 0}, such that the
following initial and boundary conditions are satisfied:

p(0, x, y) = 0, (3)

p(t, 0, y)|−L(t)�y�L(t) = p0(t, y) (4)

Figure 1. The coordinate system and the fracture.
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and

p(t, x, y) ≈ 0 for sufficiently large r =
√
x2 + y2. (5)

The conditions (3) and (5) mean that pressure is measured with respect to the
initial reservoir pressure at the depth of the fracture. In the examples below, the low
reservoir permeability implies that pressure remains at the initial level at distances
of 30–60 m from the injection hydrofracture for 5–10 years.

To derive the general solution for pressure diffusion from a growing fracture,
we rescale Equation (1) using the fracture half-length as the variable length scale:

x = L(t)ξ, y = L(t)η. (6)

and τ = t . In the new variables, Equation (1) takes on the form

L2(τ )
∂p(τ, ξ, η)

∂τ

= αw∇2p(τ, ξ, η)+ L(τ)L′(τ )
(
ξ
∂p(τ, ξ, η)

∂ξ
+ η∂p(τ, ξ, η)

∂η

)
. (7)

Boundary condition (4) transforms into

p(τ, ξ, η)|−1�ξ�1 = p0(τ, ξL(τ)). (8)

Initial condition (3) and boundary condition (5) transform straightforwardly.
In elliptic coordinates

ξ = cosh ϕ cos θ, η = sinh ϕ sin θ (9)

Equation (7) and boundary conditions (8) and (5), respectively, transform into

4DL2(τ )
∂p(τ, ϕ, θ)

∂τ
= 4αw∇2p(τ, ϕ, θ)+ d

dτ
(L(τ)2)×

×
(

sinh 2ϕ
∂p(τ, ϕ, θ)

∂ϕ
− sin 2θ

∂p(τ, ϕ, θ)

∂θ

)
(10)

and

p(τ, 0, θ) = p0(τ, L(τ) cos θ), (11)

lim
ϕ→∞p(τ, ϕ, θ) = 0. (12)

Because the problem is symmetric, we can restrict our considerations to the
domain {x � 0, y � 0}. The symmetry requires that there be no flow through the
coordinate axes, that it imposes two additional Neumann boundary conditions:

∂p(t, ξ, η)

∂ξ

∣∣∣∣
ξ=0
η� 0

= ∂p(t, ξ, η)

∂η

∣∣∣∣
ξ>1
η=0

= 0. (13)
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For constant injection pressure, p0(τ, θ) = p0 = const, and the square-root of time
fracture growth, L(t) = √

at , a self-similar solution can be obtained:

p(τ, ϕ, θ) = p0

(
1 − U0

∫ ϕ

0
exp

(−a cosh(2ν)

8αw

)
dν

)
, (14)

where U0 = 2/K0(kτ /2), kτ = a/4αw and K0(·) is the modified Bessel function
of the second kind (Carslaw and Jaeger, 1959; Tikhonov and Samarskii, 1963).
Note that Equations (2.5) and (3.4) in (Gordeyev and Entov, 1997) have one extra
division by cosh(2ν). This typo is fixed in Equation (14).

To obtain the solution with the time-dependent injection pressure, we need to
express solution (14) in the original Cartesian coordinates. From (9)

ϕ(t, x, y) = arccosh



√
at + x2 + y2 +√

(at + x2 + y2)2 − 4aty2

2at


 . (15)

Now, the solution (14) can be extended to the case of time-dependent injection
pressure by using Duhamel’s principle (Tikhonov and Samarskii, 1963). For this
purpose put

U(t, x, y) = 1 − U0

∫ ϕ(t,x,y)

0
exp

(−a cosh(2ν)

8αw

)
dν. (16)

Then for the boundary condition (4), with p0(t, y) = p0(t), one obtains

p(t, x, y) =
∫ t

0

∂U(t − τ, x, y)
∂t

p0(τ ) dτ. (17)

The assumption of square-root growth rate L(t) = √
at reasonably models

the fact that the growth has to slow down as the fracture increases. At the same
time, it leads to a simple exact solution given in Equation (17). The fourth-root
growth rate obtained in (Gordeyev and Zazovsky, 1992) behaves similarly at larger
t, therefore, the square-root rate represents a qualitatively reasonable approxima-
tion. This growth rate model was used for the leakoff flow analysis in (Valko and
Economides, 1995).

2.2. EXAMPLES

Here we present the results of several simulations of pressure diffusion in layer
G of the South Belridge diatomite, see Table I and (Zwahlen and Patzek, 1997a).
In the simulations, we have assumed that the pressure in the hydrofracture is hy-
drostatic and is maintained at 2.07 × 104 Pa (≈ 300 psi) above the initial formation
pressure in layer G. The fracture continues to grow as the square root of time, and
it grows up to 30 m tip-to-tip during the first year of injection. Figures 2–4 show
the calculated pressure distributions after 1, 2, 5 and 10 years of injection in layer
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Table I. South Belridge, Section 33, properties of diatomite layers

Layer Thickness Depth Porosity Permeability Diffusivity

[m] [m] [md] [m2/Day]

G 62.8 223.4 0.57 0.15 0.0532

H 36.6 273.1 0.57 0.15 0.0125

I 48.8 315.2 0.54 0.12 0.0039

J 48.8 364.5 0.56 0.14 0.0395

K 12.8 395.3 0.57 0.16 0.0854

L 49.4 426.4 0.54 0.24 0.0396

M 42.7 472.4 0.51 0.85 0.0242

Figure 2. Relative pressure distribution after 1 year of injection.

G. For permeability and diffusivity we use more convenient units millidarcy [md]
(1 md ≈ 9.869 × 10−16 m2) and m2/Day (86400 m2/Day = 1 m2/s).

Note that even after 10 years of injection, the high-pressure region does not
extend beyond 30 m from the fracture. The flow direction is orthogonal to the
isobars. The oblong shapes of the isobars demonstrate that the flow is close to
linear and it is almost perpendicular to the fracture even after a long time.

Figure 6 shows how the formation pressure builds up during 10 years of injec-
tion in the plane intersecting the fracture center (left) and intersecting its wing 30 m
along the fracture (right). Comparison of the two plots in Figure 6 demonstrates
that the injected water flow is remarkably parallel.

Another illustration is provided by Figure 7 and 8, where the formation pressure
is plotted versus the distance from the fracture at 0, 15, 30 and 46 m away from the
center. The pressure distribution is very close to parallel soon after the fracture
length reaches the respective distance. For instance, in Figure 7 the pressure dis-
tribution at the cross-section 45 m away from the center is different because the



WATER INJECTION: PART 1 545

Figure 3. Relative pressure distribution after 2 years of injection.

Figure 4. Relative pressure distribution after 5 years of injection.

fracture is not yet long enough. After 5 years, the pressure distribution becomes
almost parallel at all distances from the center.

As we remarked earlier, diatomaceous reservoirs are layered and the layers
are non communicating. The linearity of flow is observed in the different layers,
Figure 9. Computations show that in each layer the pressure distribution after 5
years of injection is almost the same looking down on the center of the fracture
and on its wing 30 m away from the center. Therefore, the injected water flow
is essentially linear. This observation allows us to cast our water injection model
as one-dimensional. In the following section, we incorporate the variable injec-
tion pressure into Carter’s model and obtain an elegant equation expressing the
cumulative fluid injection through the injection pressure and the fracture size.
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Figure 5. Relative pressure distribution after 10 years of injection. Note the change of scale
in the isobar contour plot in comparison with Figure 4.

Figure 6. Pressure histories at three fixed points, 12, 24 and 49 m away from the fracture,
looking down on fracture center (left) and fracture wing 30 m along the fracture (right).

Figure 7. Pressure distributions along four cross-sections orthogonal to the fracture after 1
and 2 years of injection.
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Figure 8. Pressure distributions in the same cross-sections after 5 and 10 years of injection.

Figure 9. Pressure distributions in the diatomite layers after 5 years of injection. The
cross-sections at 0 and 30.5 m from the center of the fracture are shown.

2.3. CARTER’S MODEL REVISITED

Here, we proceed to formulate a one-dimensional model of isothermal fluid in-
jection from a vertical highly conductive fracture that fully penetrates a low-per-
meability reservoir. We neglect the compressibility of the injected fluid and as-
sume that the flow is horizontal, transient, and perpendicular to the fracture plane.
It is important that the hydrofracture may grow during the injection. We denote
by A(t) and dA(t)/dt the fracture area and the rate of fracture growth at time
t , respectively. We start counting time right after completion of the fracturing
job, so A(0) is not necessary equal to zero. We denote by q(t) and pinj(t) the
injection rate and the average downhole injection pressure, respectively. We as-
sume that the fluid pressure is essentially the same throughout the fracture at each
time.

Let us fix a current time t and pick an arbitrary time τ between 0 and t . As
the fracture is growing, different parts of it become active at different times. We
define uτ (t) as the fluid superficial leak-off velocity at time t across that portion of
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the fracture, which opened between τ and τ +(τ , where (τ is a small increment
of time. The area of the part of the fracture, which has been created in the time
interval [τ, τ +(τ ], is equal toA(τ +(τ)−A(τ). Hence, the rate of fluid leak-off
through this area is equal to (qτ (t) ≈ 2uτ (t)(A(τ +(τ)− A(τ)). The coeffi-
cient of 2 is implied by the assumption that the fracture is two-sided and the fluid
leaks symmetrically into the formation. The rate of leak-off from the originally
open fracture area is q0(t) = 2u0(t)A(0). Let us split the time interval [0, t ] by
a partition {0 = τ0 < τ1 < · · · < τK = t} into small contiguous non-overlapping
subintervals [τk, τk +(τk], (τk = τk+1 − τk, and apply the above calculations to
each subinterval. Summing up over all intervals [τk, τk +(τk] and adding the rate
of water accumulation inside the fracture V (t)/dt , one gets:

q(t) ≈ 2u0(t)A(0)+ 2uτ0(t)(A(τ0 +(τ0)− A(τ0))+
+ 2uτ1(t)(A(τ1 +(τ1)− A(τ1))+ · · · + 2uτK−1(t)×
× (A(τK−1 +(τK−1)− A(τK−1))+ dV

dt
. (18)

Here V (t) is the volume of the fracture at time t . It is convenient for further calcu-
lations to introduce an effective or average fracture width w: w = V (t)/A(t). We
assume that w is constant. Passing to the limit as max

k
((τk)→ 0, we obtain

q(t) = 2u0(t)A(0) + 2
∫ t

0
uτ (t)

dA(τ)

dτ
dτ + wdA(t)

dt
. (19)

Equation (19) extends the original Carter’s model (Howard and Fast, 1957) of
fracture growth by accounting for the initial fracture area A(0) and admitting a
general dependence of the leak-off velocity on t and τ (in original Crater’s model
uτ (t) = u(t − τ)).

In order to incorporate the variable injection pressure into Equation (19), we
need to find out how uτ (t) depends on pinj(t). From Darcy’s law

uτ (t) = −kkrw

µ

∂pτ (0, t)

∂x
. (20)

Here k and krw are the absolute rock permeability and the relative water permeabil-
ity in the formation outside the fracture, and µ is the water viscosity. ∂pτ (0, t)/∂x
is the pressure gradient on the fracture face along the part of the fracture that
opened at time τ , and pτ (x, t) is the solution to the following boundary-value
problem:

∂pτ

∂t
= αw ∂

2pτ

∂x2
, t � τ, x � 0,

pτ (x, τ ) =
{
pinj(τ ), x = 0,

pi, x > 0,
pτ (0, t ) = pinj(t). (21)
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Here αw and pi denote, respectively, the hydraulic diffusivity and the initial form-
ation pressure. The solution to the boundary-value problem (21) characterizes the
distribution of pressure outside the fracture caused by fluid injection. Hence,
pτ (x, t) is the pressure at time t at a point located at distance x from a portion
of the fracture that opened at time τ . Solving the boundary value problem (21), we
obtain that

∂pτ (x, t )

∂x

∣∣∣∣
x=+0

= −
(

1√
παw(t − τ) [pinj(τ )− pi] + 1√

παw

∫ t

τ

p′
inj(ξ)√
t − ξ dξ

)
, (22)

where the prime denotes derivative. Substitution into (20) yields

uτ (t) = kkr

µ

(
1√

παw(t − τ) [pinj(τ )− pi] + 1√
παw

∫ t

τ

p′
inj(ξ)√
t − ξ dξ

)
. (23)

Combining Equations (23) and (19), we obtain

q(t) = w
dA(t)

dt
+

+ 2
kkrw

µ
√
παw

(pinj(0)− pi)
(
A(0)√
t

+
∫ t

0

1√
t − ξ

dA(ξ)

dξ
dξ

)
+

+ 2
kkrw

µ
√
παw

∫ t

0
p′

inj(τ )(
A(τ)√
t − τ +

∫ t

τ

1√
t − ξ

dA(ξ)

dξ
dξ) dτ . (24)

Further calculations imply that Equation (24) can be recast into the following
equivalent form:

Q(t) = wA(t)+ 2
kkrw

µ
√
παw

∫ t

0

(pinj(τ )− pi)A(τ)√
t − τ dτ (25)

whereQ(t) = wA(0)+ ∫ t
0 q(τ) dτ is the cumulative injection at time t .

Equation (24) states the following. Current injection rate cannot be determined
solely from the current fracture area and the current injection pressure; instead, it
depends on the entire history of injection. The convolution with 1/

√
t − τ implies

that recent history is the most important factor affecting the current injection rate.
The last conclusion is natural. Since the fracture extends into the formation at the
initial pressure, the pressure gradient is greater on the recently opened portions of
the fracture.

Our model allows us to calculate analytically the pressure gradient (22) and
the leak-off velocity at the boundary. Therefore, we avoid errors from numerical
differentiation of the pressure distribution at the fracture face where the gradient
takes on its largest value.
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3. Discussion

Equation(25) encompasses the following special cases:
(1) If there is no fracture growth and injection pressure is constant, that is,

A(t) ≡ A0 and pinj(t) ≡ pinj, then

Q(t) = wA0 + 4A0
kkrw

µ
√
παw

(pinj − pi)
√
t (26)

and injection rate must decrease inversely proportionally to the square root of time

q(t) = 2
kkrw

µ
√
παw

(pinj − pi)A0√
t
. (27)

The leak-off velocity is

u(t) = q(t)

2A0
= kkrw

µ

(pinj − pi)√
παwt

= C√
t
, where C = kkrw

µ

(pinj − pi)√
παw

.

(28)

The coefficient C is often called leakoff coefficient, see for example (Kuo et al.,
1984) The cumulative fluid injection can be expressed through C

Q(t) = wA0 + 4A0
kkrw

µ

(pinj − pi)√
παw

√
t = wA0 + 4A0C

√
t

= wA0 + (Early Injection slope)
√
t , (29)

where the ‘Early Injection Slope’ characterizes fluid injection prior to fracture
growth and prior to changes in injection pressure.

Equation (27) provides another proof of inevitability of fracture growth. The
only way to prevent it at constant injection pressure is to decrease the injection rate
according to 1/

√
t . This strategy did not work in the field (Patzek, 1992).

(2) If there is no fracture growth, but injection pressure depends on time, then
the cumulative injection is

Q(t) = wA0 + 2A0
kkrw

µ
√
παw

∫ t

0

(pinj(τ )− pi)√
t − τ dτ . (30)

If injection pressure is bounded, pinj(t) � P0, then

Q(t) � wA0 + 2A0
kkrw

µ
√
παw

(P0 − pi)
√
t . (31)

Consequently, injection rate cannot satisfy q(t) � q0 > 0 for all t , because
otherwise one would have Q(t) � wA0 + q0t , that contradicts Equation (31) for

t > 4
A2

0(P0 − pi)2
q2

0

k2k2
rw

µ2παw
. (32)
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The expression on right-hand side of Equation (32) estimates the longest elapsed
time of fluid injection at a rate greater than or equal to q0, without fracture extension
and without exceeding the maximum injection pressure. For the South Belridge
diatomite (Patzek, 1992; Zwahlen and Patzek, 1997b), Equation (32) implies that
this time is 100–400 days for q0 = 7950 l/Day per fracture at a depth of 305 m.
Maintaining high injection rate requires an increase of the downwhole pressure
that makes fracture growth inevitable, regardless of the design of injection wells
and injection policy.

(3) At constant injection pressure, both the cumulative injection and the injec-
tion rate are completely determined by the fracture growth rate

Q(t) = wA(t)+ 2
kkrw

µ
√
παw

(pinj − pi)
∫ t

0

A(τ)√
t − τ dτ , (33)

q(t) = w
dA(t)

dt
+ 2

kkrw

µ
√
παw

(pinj − pi)
(
A(0)√
t

+
∫ t

0

1√
t − ξ

dA(ξ)

dξ
dξ

)
.

(34)

This means that if the fracture stops growing at a certain moment, the injection rate
must decrease inversely proportionally to the square root of time. Perhaps the most
favorable situation would be obtained if the fracture grew slowly and continuously
and supported the desired injection rate at a constant pressure. However, since the
fracture growth is beyond our control, such an ideal situation is hardly attainable.

(4) If the cumulative injection and injection rate are, respectively, equal to

Q(t) = wA0 + 4
kkrw

µ
√
παw

(pinj − pi)A0

√
t + q0t (35)

and

q(t) = 2
kkrw

µ
√
παw

√
t
(pinj − pi)A0 + q0, (36)

then the solution to Equation (34) with respect to A(t) is provided by

A(t) = A0 + q0w

4πC2

[
eτDerfc(

√
τD)+ 2√

π

√
τD − 1

]
, (37)

where

τD = 4πC2

w2
t = π

4

(
Early Injection Slope

Initial Fracture Volume

)2

t (38)

is the dimensionless drainage time of the initial fracture, andwA0 is the ‘spurt loss’
from the instantaneous creation of fracture at t = 0 and filling it with fluid. Formula
(36) for the injection rate consists of two parts: the first component is the leak-off
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rate when there is no fracture extension and the second, constant, component is
‘spent’ on the fracture growth. Conversely, the first constant term in the solution
(37) is produced by the first term in (36) and the second additive term is produced
by the constant component q0 of q(t) in (36). In particular, if A0 = 0, we recover
Carter’s solution (see Equation (A5), (Howard and Fast, 1957)).

If q(t) ≈ q0 for longer injection times, then

A(t) ≈ A0

(
1 + q0

πCA0

√
t

)
= A0

(
1 + 4q0

π Early Injection Slope

√
t

)
, (39)

where the average fluid injection rate q0 and the Early Injection Slope are in con-
sistent units. For short injection times, the hydrofracture area may grow linearly
with time, see for example, (Valko and Economides, 1995), page 174.

Equation (39) allows one to calculate the fracture area as a function of the aver-
age injection rate and the early slope of cumulative injection versus the square root
of time. All of these parameters are readily available if one operates a new injection
well for a while at a low and constant injection pressure to prevent fracture exten-
sion. The initial fracture area (i.e., its length and height) is known approximately
from the design of the hydrofracturing job (Wright and Conant, 1995, Wright et al.,
1997). In Part 2, we show how our model can be used to estimate the hydrofracture
size from the injection pressure-rate data.

The most important restriction in Carter’s and our derivation is the requirement
that the injection pressure is not communicated beyond the current length of the
fracture. Hagoort et al. (1980) have shown numerically that for a homogeneous
reservoir the fracture propagation rate is only about half of that predicted by the
Carter formula (Equation (37) withA0 = 0). This is because the formation pressure
increases beyond the current length of the hydrofracture, thus confining it. If frac-
ture growth is slower than predicted by the mass balance (39), then there must be
flow parallel to the fracture plane or additional formation fracturing perpendicular
to the fracture plane, or both. Either way, the leak-off rate from the fracture must
increase.

In Part II of this paper, we address the issue of injection control subject to the
fracture growth.

4. Conclusions

1. We have analyzed 2D, transient water injection from a growing vertical hydro-
fracture. The application of the self-similar solution by Gordeyev and Entov
(1997) to a low-permeability rock leads us to conclude that the water flow is
approximately orthogonal to the fracture plane for a long time.

2. We have revised Carter’s transient mass balance of fluid injection through a
growing fracture and complemented the mass balance equation with effects of
variable injection pressure. The extended Carter formula has been presented in
a new simplified form.



WATER INJECTION: PART 1 553

3. We have proved that the rate of fluid injection through a static hydrofracture
must fall down to almost zero if injection pressure is bounded by, say, the
overburden stress.

4. Thus, ultimately, fracture growth is inevitable regardless of mechanical design
of injection wells and injection policy. However, better control of injection
pressure through improved mechanical design is always helpful.

5. In diatomite, fracture extension must occur no later than 100–400 days for
water injection rates of no less than 8000 l/Day per fracture and downhole
injection pressure increasing up to the fracture propagation stress.

6. In 20 fluid injection wells in three different locations in the Belridge diatomite,
in some 40 water injectors in the Lost Hills diatomite, and in several water
injectors in the Dan field, the respective hydrofractures underwent continuous
extension with occasional, discrete failures. Therefore, as we have predicted,
extensions of injection hydrofractures are a norm in low-permeability rock.

7. These hydrofracture extensions manifested themselves as constant injection
rates at constant injection pressures. The magnitude of hydrofracture extension
can be estimated over a period of 4–7 years from the initial slope of the cumu-
lative injection versus the square root of time, average injection rate, and by
assuming a homogeneous reservoir. In the diatomite, the hydrofracture areas
may extend by a factor of 2.5–5.5 after 7 years of water or steam injection.
In the Dan field, the rate of growth is purposefully higher, a factor of 2–3 in
3 years of water injection.
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