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Abstract 

In this paper we present the second generation of 
“smart” controllers for fluid injection and predictive 
techniques for developing optimal fluid injection 
policy.  A neural network model is used to optimize the 
oil field management in terms of fluid injection and oil 
recovery.  We illustrate performance of the neural 
network for model identification and control purposes. 
In particular, the neural network models are used to 
control and predict the behavior of individual injectors 
in CalResources’ Phase III steam drive pilot in the 
South Belridge Diatomite, CA, under different 
injection policies.  
 
 
Introduction  
 
In the last few years, we have carried out several 
projects on waterflood and steamdrive in tight, 
fractured reservoirs, and have analyzed the dynamics 

of these processes. In these projects, many injection 
wells have undergone unwanted fracture extensions 
and linkage with adjacent producers through the 
damaged formation.  We have learned that an 
important factor causing fracture extension has been 
the aggressive action of Proportional-Integral-
Derivative (PID) controllers during injector start-up 
periods, or when the injectors are operated near 
fracturing pressure.  This aggressive action has resulted 
in reservoir and well damage, injectant recirculation, 
and irreversibly lost oil production.  To prevent such 
unwanted fracture extensions and formation damage, 
and to optimize fluid injection, an optimal injection 
policy (i.e., the schedule of injection rates and 
pressures chosen to produce a field) is required. 
 An optimal fluid injection policy maximizes oil 
recovery per barrel of injected fluid while minimizing 
formation damage and maintaining reservoir pressure. 
There are two approaches to prevent the formation 
damage. The first approach is to tune the PID 
controller frequently to maintain satisfactory 
performance.  Because the behavior of oil reservoirs 
under fluid injection is often complex, nonlinear and 
non-stationary, the controller retuning is time 
consuming and requires a combination of operational 
experience, trial-and-error procedures and precise 
knowledge about the reservoir dynamics.  In short, 
tuning a PID controller in these processes can be quite 
challenging and often impractical.  The second 
approach is to use a robust, model-based, nonlinear 
controller. In recent work [1-2], we showed that neural 
networks are capable of making accurate predictions, 
even if all mechanisms affecting injection, production, 
and formation damage are not elucidated.  Therefore, 
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neural networks can be used to design model-based 
controllers that are capable of providing high quality 
control in the reservoirs. In addition, we showed that 
neural network model-based control strategies are 
robust enough to perform well over a wide range of 
operating conditions and that they are much easier to 
design and implement than classical PID control. 
Despite the incompletely-understood reservoir 
dynamics, this approach is preferred and is the subject 
of this paper. 
 
 
Neural Network 
 
During the past several years, neural networks have 
received considerable attention. Today, they are used 
for modeling a variety of processes. In our view, neural 
networks are attractive because: (1) it can be trained 
easily with historical data, (2) it has ability to infer 
general rules and extract typical patterns from specific 
examples, and (3) it recognizes input-output mapping 
parameters from complex multi-dimensional data.  
From a control theory viewpoint, the ability of neural 
networks to model nonlinear systems is perhaps the 
most significant feature.  
 Fig. 1 shows the structure of a conventional  neural 
network model.  The typical neural network has an 
input layer (layer in which input data are presented to 
the network), an output  layer (layer in  which output 
data are presented to the network, network prediction), 
and at least one hidden layer.  
 Several techniques have been proposed for training 
the neural network models. The most common 
technique is the backpropagation [3-5] approach.  The 
objective of the learning process is to minimize the 
global error in the output nodes by adjusting the 
weights. This minimization is usually set up as an 
optimization problem.  Here, we use the Levenberg-
Marquardt algorithm, which is faster and more robust 
than the conventional algorithms, but it requires more 
memory. 
 
 
Field Application 
 
The CalResources Phase III Steam Drive Pilot is 
located in Section 33 of the South Belridge Diatomite, 
Kern County, California (Fig. 2).  This pilot has 12 
steam injectors, 9 producers, and 13 vertical 
observation wells.  Nominally, the wells are staggered 
on a 5/8-acre spacing. The steam injection wellhead 

pressures and rates in all the Phase III pilot injectors 
have been acquired at 30-second intervals and 
transmitted over Internet to Cal.  The temperature logs 
have been acquired once a month. 

The central pilot injector, 553AR, is surrounded by 
four observation wells (753LO7 and 753PO1 on the 
east side, and 753LO5 and 753LO6 on the west side) 
and, therefore, its performance can be verified perhaps 
better than those of the other 11 injectors.  Figs. 3 and 
4 show the maximum, average and minimum injection 
pressures and rates in 553AR, averaged over 24-hour 
periods through January 7, 1997.  If these three 
quantities overlap with each other, then both the 
injection pressure and rate are controlled well.  Fig. 3 
shows that the wellhead injection pressure, which is the 
primary controlled variable, remains essentially 
constant over each 24-hour period, with the exception 
of down-times and occasional upsets.  This pressure 
has been increased in two ramps up to 664 psig.  On 
the other hand, Fig. 4 demonstrates that the injection 
rate, which is the manipulated variable when it falls 
below the preset maximum, is controlled less well and 
experiences many spikes which double or triple its 
average values.  Fig. 5 shows this phenomenon in more 
detail over a 15-day period of steam injection.  The 
occasional pressure upsets cause the rate to jump 
abruptly.  These rate spikes are then choked by closing 
the steam injection valve at the wellhead and 
decreasing the injection pressure somewhat.  In 
between these upsets, the pressure is controlled 
extremely well.  The cumulative steam in 553AR has 
been some 57,000 barrels CWE over the first 467 days 
of injection, Fig. 6.  This volume is identical to that 
injected over the same period of time in the prior Phase 
II steam drive pilot injector, IN2L, which was also 
completed across the bottom half of the diatomite 
column [6, 7].  Note, however, that at the end of the 
initial 467 days of injection, the steam injection rates 
(here slopes) in both pilots were very different.  By 
that time, IN2L had linked to a close producer, 543P-
29, 40 feet west of it [6].  No such linkage occurred 
between 553AR and its adjacent producers 553M1 and 
553R1.   

The second steam injector considered here is 
563LR.  Its average injection pressure, Fig.7, and rate, 
Fig. 8, are controlled less well than those in 553AR.  
The cumulative steam injected after 400 days on 
injection and the injection rate both similar to those in 
IN2L, Fig. 9. 
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The temperature response to steam injection in 
553AR is shown in Figs. 10-11 to the west of the 
hydrofracture planes, and in Figs. 12-13 to the east of 
them.  The two east observation wells (PO-1 and LO-
7) are almost vertical across the diatomite column, and 
are nominally 25 feet E-SE from the upper 
hydrofracture plane, and 40 feet E-SE from the lower 
one.  The west observation wells are also vertical and 
are nominally 10 ft (LO-5) and 25 feet (LO-6) W-NW 
from the upper hydrofracture plane, and 30 feet and 15 
feet W-NW from the lower hydrofracture plane, 
respectively.  If the conductive heating from a slowly 
moving heat front dominates, and the hydraulic 
diffusivities are equal on both sides of the 
hydrofractures in 553AR, then one expects the 
observation wells to respond in proportion to the 
east/west injection  distance / time .  Therefore, 
one expects LO-7, PO-1 and LO-6 to respond similarly 
across the upper injection interval.  They do not.  For 
example, about six times more heat goes towards LO-6 
than LO-7. If one then compares PO-1 after 569 days 
with in LO-6 after 100 days, then somewhat more heat 
is flowing towards PO-1 than LO-6.  A similar 
comparison of LO-7 and LO-6 reveals the same 
behavior.  Hence, from Figs. 10-13 it follows that the 
square-root-of-time scaling is approximately correct 
for the lower hydrofracture, but the upper one requires 
a more sophisticated analysis, such as the one in Refs. 
[6, 7]. 

The first discernible heating to the east of 553AR 
occurs after 100 days of steam injection.  Then, the 
heating progresses in proportion to the square root of 
time until 200-300 days on injection. Later, the rate of 
heating slows down visibly, probably due to a 
rearrangement of steam injection westward.  To the 
west of the hydrofracture planes in 553AR, the 
response in LO-7 is mostly through conductive heating 
and mostly at the boundary of the L and K cycles.  
This response accelerates, however, in the M-cycle 
after 300 days on injection.  A strong temperature 
response is also evident in PO-1 in the M-cycle.  
Unfortunately, in this well, the temperature logs 
extended to the M-cycle only after 500 days on 
injection. 
 
Model Identification for the CalResources 
Steam Injectors 
 

Historical data from two steam injectors in the 
Phase III pilot have been used to develop their neural 

network (NN) models. The inputs to each model are 
flow rates and wellhead pressures in 30-second 
intervals.  
 The NN model has ten input nodes, three hidden 
nodes (with a nonlinear transfer function), and one 
output node (with a nonlinear transfer function).  The 
inputs include 1 current value and 4 previous values of 
the injection pressure and flow rate for a given well.  
The output is a prediction of the injection flow rate one 
time interval into the future. The input and output data 
are scaled uniformly between 0 and 1.  Figs. 14 and 15 
show excellent performance of the network models. 
 In addition, we developed a NN model for 
prediction of the injection pressure. The NN model has 
ten input nodes, five hidden nodes (with a nonlinear 
transfer function), and one output node (with a 
nonlinear transfer function).  The inputs include 1 
current value and 4 previous values of the injection 
pressure and flow rate for a given well.  The output is a 
prediction of the injection pressure one time interval 
into the future. The input and output data are scaled 
uniformly between 0 and 1.  Figs. 16 and 17 show 
excellent performance of the network models. 
  To predict the outputs more than one time step into 
the future, iteration through the neural network is 
required. Fig. 18 shows that the performance of the 
network is seriously affected by iteration.  However, 
this model is effective and has good performance for 
up to 20 steps into the future (Fig. 19).  Hence, this 
model can be used without any further modification for 
Neuro-Geometric control [1] or Dynamic Neural 
Network control (DNNC) [9, 10], since in this case we 
only need one-step prediction.  For model-based 
strategies with more than one step, usually we need 
less than 10 iterations.  Therefore, for Long-Prediction-
Horizon Model Predictive control purposes, this model 
should also be sufficient. 
 To study different scenarios of injection policies 
however, we need more iterations.  Unfortunately, 
conventional neural networks are not stable once they 
are subjected to long-term prediction through iteration. 
In this study, an alternative model proposed in Ref. [9, 
10] is used.  In this model, part of the information from 
the input layer is presented into the output layer.  The 
effect of this additional connection is to filter the 
prediction from the hidden layer.  This prevents noise 
from propagating further into the network predictions.  
Figs. 20 and 21 show the structure and performance of 
the new network model. However, further study is 
needed to better  understand the properties of this new 
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model.   
 
Controller Design 
 
Injector Model: The injector model is developed 
based on historical data. This model is assumed to 
represent a real injector. The model is of the form 

 

{ }P k h F k k P k k( ) ( ) , . . . , ( ) , ( ) , . . . , ( )+ = - -1 4 4  F   P  (1) 

 
where P is the wellhead pressure, F is the flow rate of 
injected fluid, and h{., ..., .} is a smooth nonlinear  
function. The preceding model can easily be written in 
state-space [1] form by setting 
    

[ ]x k F(k T

u k F(k

y k P k

( ) ),

( ) )

( ) ( )

= -

=

=

4  ..., F(k -1), P(k - 4), ..., P(k -1), P(k)

 
     (2) 

 
The model of (1) can be rewritten in the following 
form: 
 

x(k+1)=f{x(k)}+g{x(k),u(k)},    
          y(k) = x9(k)         (3) 
 
with 
 

f{x(k)}= [x2(k) ...  x4(k) 0  x6(k)  ... x9(k)  0 ]T  
 
g{x(k), u(k)}= [0 0 0  u(k) 0 0 0 0 h{x(k), u(k)} ]T  (4) 

 
Once the injector model has been transformed into the 
state space form of Equation (3), the approach 
described in Refs. [1, 9] can be used to design a model-
based controller and to analyze the setpoint tracking 
performance of the neural network controller. 
 
Nonlinear Controller:  A neural network model can 
be used for controller synthesis directly or indirectly. 
In this study, an indirect method is used, i.e.,  the 
inverse of the process model at each sampling time is 
calculated numerically. We consider an objective 
function of the form:  
 

E(k)=[(k)-h{., ..., .}]2   (5) 
 

where (k) is a reference value given by[10, 11]: 
  
 

(k) = (k-1) +(1-) [yset(k)-d(k)- (k-1)]  
 (6) 
(0)=y(0) 
 
d(k)=ym(k)-y(k) 
 
where  is an adjustable parameter such that 0 <  < 1 
and ym is the measured value for controlled variable.  
The smaller the parameter , the faster the closed-loop 
response.  
 The Newton-Raphson method is used for the 
numerical inversion, as in [11, 12].  The following 
equations are used in this method at each iteration j to 
calculated the controller action. 
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with the initial guess for u(k) as follows, 
 

u k u k( ) ( ).[ ]0 1     (8) 
 

Details of the Jacobian,  


E k
u k

j

j
( )

( )

[ ]

[ ]










1

1
, calculation 

have been presented in Refs. [1, 11, 13, 14]. 

Controller Implementation  

To illustrate the performance of the Neuro-Model 
Predictive Controller (NMPC), the developed 
controller model is applied to control the Phase III 
steam injectors.  The open-loop step responses for a 
series of step changes in injection flow rate is shown in 
Fig. 22.  It is seen that the model is highly nonlinear. 
NMPC was tuned with a filter constant value of 
=0.90.  Fig. 23 shows the setpoint tracking 
performance of NMPC.  The controller performs very 
well in tracking the setpoint.  In addition, Fig. 23 
shows the setpoint tracking performance of NMPC 
with different filter constant . Increasing   will result 
in the slower but smoother response.  Decreasing  
will result in a faster but more oscillatory response. 
 
 
Conclusions 
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We presented a detailed case study in which Neuro-
Model Predictive Control (NMPC) strategy was 
applied to a fluid injector.  We showed that the NMPC 
strategy is robust enough to perform well over a wide 
range of operating conditions. The performance of the 
NMPC was tested by applying it off-line to several 
steam injectors at CalResources, LLC. Currently, we 
are developing a computer interface to implement the 
NMPC on-line. 
 Despite our incomplete knowledge, neural network 
models have been able to predict the complex behavior 
of steam injectors. The conventional neural network 
models are sufficiently good for a short term 
prediction. Unfortunately, these models are not stable, 
once they are subjected to long-term prediction 
through iteration.  In this study, a special network 
model was used.  In this model,  part of the information 
from the input layer is presented to the output layer.  
This prevents the noise from propagating further into 
the network prediction. It has been shown that the 
model can stabilize the propagation of the noise and 
therefore has excellent performance for long term 
prediction  In this study, an accurate model for short- 
and long-term prediction of steam flood injector was 
identified. However, to understand the full potential of 
the current model further investigation is required. 
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Figure 1. Conventional neural network model 
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Fig. 2.  The CalResources Phase III Steam Drive Pilot in the South Belridge Diatomite. 
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Fig. 3.  24-hour averages of 30-second 
measurements of WH steam pressure in 553AR.  
This plot represents 880,000 data points. 
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Fig. 4.  24-hour averages of steam injection rate 
in 553AR.  The average rate is usually close to 
the minimum rate, indicating sporadic rate spikes 
which double the average injection rate. 
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Fig. 5.  30-second measurements of injection rate and wellhead pressure in 553AR.  Note that sporadic 
pressure upsets cause injection rate spikes up to three-times the average. 
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Fig. 6.  The cumulative steam injection in 553AR-33 (upper curve) compared with that in IN2L-29 in the 
Phase II Pilot.  Note that after 460 days on injection, both cumulatives are the same, but IN2L injects at a 
much higher rate because it linked with the nearby producer, 543P-29. 
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Fig. 7.  24-hour averages of 30-second measure-
ments of WH steam pressure in 563LR.  This 
plot represents 670,000 data points. 
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Fig. 8.  24-hour averages of steam injection rate 
in 563LR.  The average rate is usually close to 
the minimum rate, indicating sporadic rate spikes 
which triple the average injection rate. 
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Fig. 9.  The cumulative steam injection in 563LR-33 (lower curve) compared with that in IN2L-29 in the 
Phase II Pilot.  Note that after 400 days on injection, both cumulatives are the same, and both wells inject 
at roughly the same rate. 
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Fig. 10.  The incremental rock heating near LO-7, 24-40 ft east of 553AR.  The temperature profiles are 
drawn in equal increments of the square root of time.  A uniform spacing between these profiles indicates 
conduction-dominated heating. Note that the logs are miscalibrated, relative to the first one, by up to 100F. 
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Fig. 11.  The incremental rock heating near PO-1, 25-40 ft east of 553AR-33.  The temperature profiles are 
drawn in equal increments of the square root of time.  Only the two latest profiles extend to the M-cycle  
Uniform heating by conduction is evident in the L cycle.  Note that the J, K and L cycles appear to have 
cooled by up to 100F at 569 days, while the M-cycle heated up. 
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Fig. 12.  The incremental rock heating near LO-5, 10-30 ft west of the hydrofracture planes in 553AR-33.  
The temperature profiles are drawn in equal increments of the square root of time.  Note that the rate of 
heating slowed markedly between 194, 377 and 568 days (the last three profiles).  Also note that the 
magnitude of response is 3800F. 
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Fig. 13.  The incremental rock heating at LO-6, 15-25 ft west of the hydrofracture planes in 553AR-33.  
The temperature profiles are drawn in equal increments of the square root of time.  Note that the rate of 
heating slows markedly between 297and 568 days of injection (the last four profiles). 



M.  Nikravesh, M. Soroush, R. M. Johnston, T. W. Patzek SPE 37445 
_____________________________________________________________________________________ 
12

AR-Injector 

30

50

70

90

110

130

30 50 70 90 110 130
Steam Injection Rate (BCW/day), Actual

S
te

am
 I

n
je

ct
io

n
 R

at
e 

(B
C

W
/d

ay
),

 N
N

 
P

re
d

ic
ti

on

 
Fig. 14. Neural network prediction for injection 

rate, Injector AR. 
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Fig 16. Neural network prediction for wellhead 

pressure, Injector AR. 
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Fig 15. Neural network prediction for injection 

rate, Injector LR. 
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Fig 17. Neural network prediction for wellhead 

pressure, Injector LR. 
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Fig. 18. Performance of conventional neural network after 1000 iterations. 
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Fig. 19. Performance of conventional neural network up to 20 iterations. 
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Fig. 20.a. Performance of proposed  neural network after 1000 iterations. 
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Fig. 20.b. Performance of conventional neural network after 100 iterations and proposed neural network 
after 1000 iterations. 
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Fig. 21. Non-conventional neural network structure [9, 10]. 
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Fig. 22. Open-loop step responses for a series of changes in injection flow rate. 
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Fig. 23. Setpoint tracking performance of NMPC. 
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