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This approach to study the morphology
(shapes and connectivity) of sedimenta-
ry-rock pore space is based on funda-
mental concepts of mathematical mor-
phology. An efficient and stable algo-
rithm is proposed that distinguishes
between the pore bodies and pore
throats and establishes their respective
volumes and connectivity. 

Introduction
Fluid transport through a permeable rock is
determined by the void-space geometry and
connectivity and the solid-surface/fluid
chemistry. The ever-changing distribution
of fluids in the pores of a gas- and oil-bear-
ing rock must be understood to develop a
successful hydrocarbon-recovery process.
The process-dependent redistribution of
reservoir fluids during production and
injection determines how much of the ini-
tial hydrocarbons will be recovered and how
much will be trapped. Although the length-
scale of an oil field is measured in kilome-
ters, the ultimate success of an oil- and gas-
recovery scheme is the net result of count-
less displacement events at a scale measured
in micrometers. Recent advances in
microimaging of natural rocks, combined
with advances in pore-network flow model-
ing, enable a better understanding of pore-
level displacement mechanisms. It is possi-
ble to make credible predictions of the
effects of the rock wettability and fluid prop-
erties on the relative permeabilities and cap-
illary pressures, as well as on the trapped-oil
and -gas saturations.

Imaging
A microscopic image of rock is a 3D array of
cubic atoms or voxels. Each voxel is
assigned a nonzero value if it is attributed to
the pore space and zero otherwise. A group
of neighboring voxels can make a loosely
defined “pore throat” or a “pore body.” In
modeling, the pore throats control fluid
flow, whereas the pore bodies provide fluid
storage. Even at this level, rock description
is approximate. First, the number and size
of the voxels in an image are limited by the
resolution and viewing angle of the imaging
device. Second, the image itself is often an

interpretation of the reflection, absorption,
attenuation, and diffraction patterns of elec-
tromagnetic waves. Each such interpreta-
tion is a solution of a series of inverse prob-
lems. The inversion errors are then com-
bined with errors inevitably produced by
assignments of the voxels that are part solid
and part void space. The representativeness
of a digital image, and the determination of
minimum resolution necessary to image a
given rock adequately, are issues yet to be
appropriately addressed in the literature.

Many computer “skeletonization” algo-
rithms are based on thinning methods,
which remove the redundant elements of an
image while preserving certain topological
properties of the entire pore space. Tests of
thinning algorithms on simple computer-
generated images show that a refinement of
the resolution can lead to less accurate
results. A skeletonization method, based on
a complete catalog of shape primitives for
2D and 3D objects, was developed.
Characterizing the pore-space geometry
without applying thinning algorithms was
proposed. In particular, characterizing the
skeleton as the set of centers of the maximal
balls was used. 

Pore-Body and Pore-Throat 
Detection Algorithm
A weak point of thinning algorithms is that
once a voxel is deleted from the set, all infor-
mation related to this voxel is lost, and the
cumulative effect can distort the result.
Processing images by parts is impossible
because the result depends on which voxel is
removed first when multiple choices exist.

This procedure does not remove voxels.
Instead, the information is stored in an
aggregate format. In the interior part, far
enough from the boundary, the result of
image analysis depends neither on the ori-
entation of the image nor on the selection
among the multiple choices of voxels to
be removed. 

At this stage, the algorithm does not
produce a complete pore network ready for
single-phase- or multiphase-flow simula-
tions. However, it robustly characterizes
the pore connectivity through a stick-and-
ball representation.

Building Voxel Objects. A voxel object is
one of the basic elements of this algorithm.
It corresponds to a voxel in the image;
therefore, it has three coordinates. Further,
each voxel “knows” its maximal radius (i.e.,
the radius of the corresponding maximal
ball). In addition, each voxel has two lists of
pointers to other voxels. In all calculations,
unit length is the linear size of one voxel.

First, the algorithm calculates the maxi-
mal-ball radius for each voxel. Starting from
a zero-radius ball (i.e., the voxel itself), the
radius of the ball is incremented by one step
until the ball hits a solid-phase voxel. The
algorithm complexity increases rapidly with
refinement of the image resolution. 

After all maximal balls are constructed,
some are subsets of others. Both included
balls and the corresponding voxels carry
information about the pore space that is
already stored in the including ball or balls.
Therefore, the second step in the algorithm
is removal of the included balls. To perform
this operation, it is convenient to store all
voxels in a sorted list, in which the sorting
is by the maximal radius. 

In this procedure, the set of centers of
the voxels remaining in the list after
removal of the included maximal balls is
the skeleton of the pore space. The order in
which these voxels are calculated does not
matter. If a large image must be processed,
it can be split into parts, each part can be
analyzed separately, and the results can be
merged into the skeleton of the whole pore
space. Therefore, a computer with a mod-
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est memory size can be used to process a
large image.

Finding only the skeleton is not sufficient.
To characterize the pore space, the “redun-
dant ribs” corresponding to the corners and
similar structures should be removed. The
voxel objects already “know” the radii of their
maximal balls. Note that the maximal radius
decreases along a rib leading into a corner.
Therefore, a hierarchy of the skeleton voxels
needs to be established. If the maximal balls of
two voxels overlap, the one with the larger
radius is called master and the other is called
slave. Thus, the third step of the algorithm is
to search for the slaves of each voxel. For each
current voxel, a domain in which potentially
overlapping voxels can exist is determined
from the radius of its maximal ball. Next,
using the pointers provided for these loca-
tions by the reference table, the slave voxels
are found. Then, the two lists of pointers for
each voxel include pointers to the masters
and slaves of this voxel, respectively. 

After building the hierarchy, there are
many voxels that are masters and slaves at
the same time. To characterize the pore,
only the voxel with the largest maximal ball
is retained. This characterization is done
through a four-step enhanced hierarchy
procedure, the purpose of which is to retain
only the largest master voxels. This proce-
dure is detailed in the full-length paper.

It is natural to call the union of all maxi-
mal balls associated with the voxels con-
necting two given master voxels a pore
throat. In the stick-and-ball diagram, a pore
throat connecting two pore bodies is depict-
ed as a straight-line segment connecting the
centers of the balls associated with these
pore bodies.

Algorithm Verification. To verify a physical
model, numerical or analytical simulations
should be compared with field or laboratory
measurements. To verify a numerical algo-
rithm, a test problem with a known analyti-
cal solution can be considered, and the
numerical result compared with the exact
one. In image analysis, verifying an algo-
rithm is not straightforward. The test image
must have sufficiently complicated geome-
try with internal openings and connections
between them. Also, the image should be
small and simple so that the results of com-
putations will be transparent and verifiable. 

To verify this algorithm, a computer-gen-
erated packing of equal spheres was used.
The spheres are packed in layers. Every
layer in which all spheres touch each other
is sandwiched between two layers in which
each sphere is tangential to four spheres
from one layer below and four spheres from

one layer above (Fig. 1a).
The whole pack is shown
in Fig. 1b, and its porosi-
ty, if the stencil in Fig. 1a
is applied indefinitely, is
approximately 26%. 

In some cases, the
results can be reasonably
good if the sphere pack is
aligned with the coordi-
nate axes, but the algo-
rithm may fail in other sit-
uations. Therefore, to test
the algorithm, the whole
pack of spheres was rotat-
ed. Then, a part of the
image cut by a cube was analyzed. The pore
space of this part is shown in Fig. 2. Fig. 3
shows the stick-and-ball diagram. No quan-
titative criterion of whether the pore-body
and pore-throat shapes are detected correct-
ly can be applied, and the shape analysis can
be performed only visually.

It is difficult to specify the rigorous
requirements for a “sufficient” resolution of
a rock image. However, numerical experi-
ments with images of the various computer-
generated sphere packs show that for an
adequate description of the pore space, the
resolution should be at least one order of
magnitude finer than the representative
sphere radius. 

Dimensionless Capillary Pressure
When the pore space is shared between two
immiscible fluids in equilibrium, the wetting
fluid occupies the corners of both large and
small pores, while the nonwetting fluid
occupies the central part of the invaded
pores. An interface between these two fluids
is a surface the curvature of which is deter-
mined by the capillary pressure. In reality,
the fluid interfaces are not spherical; howev-
er, spheres can approximate them. The infor-
mation about the maximal balls can be used
to reconstruct a capillary pressure curve. 

Information about the maximal-ball dis-
tribution enabled computing a dimension-
less drainage-capillary-pressure curve,
which simulates mercury injection. It was
concluded that the calculated capillary
pressure curve was a robust descriptor of
the pore-space geometry, and it can be used
to determine the quality of computer
reconstruction of natural rocks. Also, an
appropriate scaling of this curve should
predict the capillary pressure of the rock on
the basis of its 3D image. This scaling has
not yet been developed because of a lack of
appropriate experimental data. The authors
observed that the nonwetting-phase break-
through saturation during drainage has lit-

tle relation to the sandstone porosity.
Moreover, at least within the considered
length scales, this breakthrough occurs at
lower capillary pressures in larger sand-
stone samples. JPT

For a limited time, the full-length paper
is available free to SPE members at
www.spe.org/jpt. The paper has not
been peer reviewed.

Fig. 3—Stick-and-ball diagram of
the pore space.

Fig. 2—Pore space of the rotated
sphere pack .

Fig. 1—(a) A stencil of the sphere pack; (b) the whole
sphere pack.
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