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Abstract: The increasing energy demand calls
for advances in technology which translate into
more acctate and complex simulations of
physical problems. We are trying to understand
volumetric rock damage, which is essential to
understanding the geomechanics of oil and gas
reservoirs. The fragile microstructure of some
rocksmakes it difficult to predicthe propagation

of damage and fracture in these rocks, therefore a
mathematical model is required to predict the
fracture mechanisms in such materials. The
governing equation of rock damage is a
nonlinear parabolic partial differential equation
(PDE). Thephysics of the problem imposes a
number of complexities that should be handled
numerically. In this paper, we present the results
we obtained using COMSOL 3.5a and we show
how a complicated problem can be solved using
the finite element method incorpogdt in
COMSOL. The results could be used in similar
geomechanical and structural damage problems
such as failure and rupture of Steel, Aluminum,
Concrete, etc. Moreover, the pattern of rock
damage in oil and gas reservoirs is of great
significance in recovery of hydrocarbon in
petroleum engineering.

Keywords: Volumetric rock damage, Damage
diffusion, Reservoir gemechanics, Brittle
fracture.

1. Introduction

Solid mechanics and strength of materials are
two of the oldest engineering mechanics
problems The fundamental works of Galiled][
and Griffith [2] were the early steps in predicting
the fracture strength of materials using an energy
balance approach. In the “Two NeSciences”
(1638), Galileo asked the question how long an
object under load calast beforeit fails due to
damage. This question was much deeper and
very different than those askégt Robert Hooke

in 1660, when he discovered the laws of
elasticity. In petroleum engineerindpe problem

of rock fracturing is one of the problems which
have beenof interestfor the past few decades
However, rock fractures are more important now
due to demand of production fromow
permeability reservoir rocks such as diatomite
oilfield or gas shaleg[3]. Continuum damage
mechanics (CDM) is a branch oflisomechanics
which deals with the formation and coalescence
of microfractures of various scales, called in
general, micradefects. Micredefectsare created
by mechanical or environmental loads. These
loads result in deterioration ofaterial and bond
brakeage mechanisms, leading to the loss of
material stiffness. Damagaechanic looks into
the formation of damage. As the damage
propagatesthe material bodypecomes discrete,
however to preserve the continuity of material so
that the continuunmechanics & applicable, the
other branch of mechaniedracture mechanics,

is invoked. Fracture mechanics takes the effects
of microcracks as discrete defects, into a
continuum body of intact materialn this article

we look at damage problem from a
thermodynamic standpoint in which bond
breakage mechanism leads to propagation of
damage.

1.1 Definition of damage parameter

As a rock specimen undergoes external load, the
chemical bonds in the microstructure of rock
undergo excitation due to a thermodynamic
proces. This excitation makes the energy given
to rock matrix go beyond the activation energy
of bonds, therefore; bonds start to break. This
breakage of bonds is called rock damage. In
other words, damage at a point in rock can be
physically interpreted athe properly averaged
fraction of broken bonds inside microstructural
elements of the body Once the bonds start
getting broken, their load carrying capacity
becomes zero, hence the load transfer could only
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continue through intact bonds. This reductién o
load transferring agents from cross sectional area
S to S can be used to define damgggrameter
Zas

z 5 % )

S in Equation (1) is the portion of the total cross
section S, which remains intact and can transfer
load as show in Figure 1 This is the definition
used in damage mechanics.
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Figure 1. Macroscopic interpretation of damage

Alternatively, some damage mechanics books,
define a continuity factok as:

\ Z (2)

so that in original prist@ material damage
parameter isO and continuity factor isl.
Fracture then corresponds damage parameter
equal tol or continuity factor of. In practice,
damage paramet@&annever attairnthe value of
1.0 and failureoccurs earlier, atlower values
Z 1, which is obtained through analysis of
localization B, 5]. Therefore, the actual stress
that can be carried across the partially damaged
cross section isV which is related to the bulk
stress Vand damage parametet by Equation
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Figure 1 shows the increase in the valustodss

V at the damage zone in a bar under tension.
The doubleneaded arrow along x direction
indicates the direction of damage propagation
which in the case shown here is perpendicular to
the direction of load.

1.2Governing equationof rock damage

Damage theory, originally developed by
Kachanov §, 7] and later extended to several
areas of engineering and physics by many
researchers including8] 9 is based on simple
ordinary differental equation of the form;

sZ

Wgqg Z \ (4)

which governs the evolution of damage, where
Wis the characteristic time and q is the damage
accumulation term which is a dimensionless-non
negative number specified for a given material.
Once q is replaced with the appropriate kinetic
law, the rate of damage shown on the-hethd
side of the Equ#on (4) can be obtained as;

SEXL Sone(z @) 6

In whichf Z is an exponential function in the
following form:

(3 @ Fexnts)

and Nis the damage diffusion parameter.heT
positive sign in the right hand side of the
equatio indicates that the rate of damage has to
remain nomnegative (>0 or =0) during the
numerical analysis. This constraint is imposed
by the physics of damage as a +mraling
process We access the solution vector and
manipulate the vector such that thater of
damage is always positive. We will explain the
steps we took to modify the solution to assure a
positive damage ratén this article. B is a
constant which has to do with the stress level
applied to rock. Imall analysis performed here
we use the constant value of 10 fgr

Notice that,the partial differential equation (5)
presented here, is nonlinear parabolic PDE and
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does not haw an analytical solution, therefore; it
has to be solved numerically. et our focus is

on the COMSOL features we used, therefore;

try to focus on the method of solution and
demonstrate the technics which eame up with

to solve this PDE using COMSOL3®%a and
present the results we obtainedhe derivation

of this equation is beyond the scope of this paper
and nterested readers are recommended to see
[10].

2. Description of the problem

The damage parameter and governing equation
are now defined; thefore we can outline the
problem we wish to solve. Given the initial
distribution of damage in a domain we are
interested in knowing how damage is propagated
in rock The damage parameter or state variable
changes with time and spadeigure 2 showshe
domain and boundary conditions of the problem.
Vector n is the outward normal vector to the
domain boundary at any poit. Here,X is a
vectorand we use a bold font for. itThe damage
parameter is a scalar as defined in Figure 2 and it
is equal tazero on the boundary.

r n
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w =10, D%:() on T
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Figure 2. The timedependent area of damaged
rock.

The flux of damage is also zero across the
boundary. What we are interested to know is the
distribution of damage over the domain as the
time goes on. It should be noted that, when
material undergoes damage and failure, it
ruptures. The rupture or what is mathematically
known as blowup timeis of great interest in our
application. When blowp occurs, damage
parameter jumps to values greater than one and

the solution to PDE ceases to exist. Studying the
convergence of solution becem significant in
this problem and we are presenting convergence
plot as well.

2.1 Set up the problem in COMSOL

In order to solve Equation (5), we are utilizing
the coefficient form of PDE in COMSOLThe
coefficient form is used to model a physics
prodem using a system of one or more time
dependent partial differential equations and is in
the form of Equation (6).

su sl
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We assign coefficients oEquation (6) so it
modelsEquation (5). Here is the patle tookto
perform his:

COMSOL 3.5a >Model Navigator>COMSOL
Multiphysics>PDE Modes> PDE, Coefficient
Form> Timedependent analysis

To assign the coefficients in Equation, (&g use

zerofor d, D JanBEquations (7) and (8pr f
and c.

f @ u)exp% @)
and
R 1 8
¢ N expt— ®)

Once the coefficient form is created, we can
solve the transient problem.The following
sections give the details of analysi$o have a
better control on problem variables and post
processing feates, we use Livelink for
MATLAB and part of the script which
demonstrate our method is presented here.
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2.2 Blowup time

As the solution time goes on, the onset of rupture
is reached.Thistimeis when the solution ceases
to existandis called the life time of material also
known as blowup time in mathematics. This is
a known phenomenon in parabolic problems and
occurs when the rate of inpimnto the system is
larger thanthat of output. Here wdirst obtain

the blowup time for the case of NO,
numerically and call itthe blow-up time for no
damage diffusion case denoted byt This is
used as a reference time in all our analysis and it
showshow long it take for a rock samm@ under
tensile loado fracture if damagds acamulated

in one point. This is similar to the case of brittle
material undergoing rupture.In other words,
when thetensile load is applied to laittle rock,

the damage is accumulated at one paird mg

not diffuse through rock because of brittle nature
of material It goes without saying that, if the
same load is applied to a ductile material, the life
time or the time required to rupture is larger.

Figure 3 shows the onset of blayp for 0. It
can be seen that the damagereases around the
mid-point of the 1D bar under tension

- [—Initial condition
.|~ Time Step: 400
{ |~ Time Step: 700
| |—Time Step: 900
— Time Step: 950

o
o

—Time Step: 986
|~ Time Step: 987 (Blow-up)

o
o

Damage parameter,
o o
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S
S

Figure 3. Solution at ie onset of blovup to obtain
the BuO

The solution time for time steps 986 and 987 are
8.36x10" and 8.37x10" respectively. fiese are
dimensionless timeselevantto the physics of
this problem. It can be seen that a minute change
in time is required for the solution to blewp.

In other words, to get the exact time of rupture
for material or to obtain the exact values of
damae distribution right before the rupture,
extremely small time steps are required. In

engineering applications, however; the level of
accuracy that we have considerkdre is not
required.

2.3 Solution of PDE

Figure 4 shows the distribution of damagihw
time for &0.06. A quadratic function is uséat
the initial distribution of damage which is plotted
in blue in Figure 4.

—Initial condition, o,
0.8
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Damage distribution
0.2+ declines with time
0 — ?f""? — —
0 0.2 0.4 0.6 0.8 1

X
Figure 4. Solution without taking into accounts
the nonhealing effect of damage.

Since damage at any points in the domaf
problem remains either constant or increakes

to the norhealing nature of damage process, the
solution has to be either constant or ever
increasingTherefore; to honor the physics of the
problem, the solution vector has to be
manipulated such thathe rate of damage
remains nomegative. This is achieved by
accessing the structure of solution and making
modifications through scripting in MATLAB.

2.3 Accessing the structure of solution
through MATLAB

Once the solution is completed successfully
nodal values and degrees of freedom are saved in
“nodes” and “dofs”variables These can be
accessed using the following commar{ismes
1-4).

nodes = xmeshinfo(ferout,'nodes);

dofs=nodes.dof

coords=nodes.coor(

AIWINIF

X=fem.sol.u
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Line (1), retrieves the nodal information from the
finite element solution. Line (2), retrieves the
degree of freedom of nodes. Line (8)yes the
coordinatesof the degregof freedom obtained
in line (2). Line (4), saves the solution vector in
variable “X” for modifications.

To eliminate the dédining values ofdamagethe
following lines (59) are used. We use the
values of the earlier step if the later step has
lower \alues.

for i=1:length(dofs

if (X(i,2))<(X(i,1))

X(i,2)=X(i,1);

enc

OO O

enc

The result obtained after making these changes,
is shown in Figure 5.

—Initial condition, O,
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Figure 5. Solution corrected for nehnealing
effect of damage.

It can be seen that the damage distribution
increases from the initial condition to about a
uniform value of 0.72 as the time elapses.
Besides, as we increased the damage diffusion
parameter fromMN:0 to N0.06, we noticed two
modes of damage diffusion in rock. &fiormer

is a brittle failure as shown in Figure (3) in
which damage accrues locally until failure at
mid-point of the bar under tension and the latter
is a ductile failure in which, damage initially
diffuses toward boundaries and once the damage
attains auniform value along the bar, it starts
increasing uniformly as shown in Figure (5).

2.4 Convergence of solution

Obtaining a solution using numerical methods,
does not guarantee the accuracy of solutione
more thing which should be done to make sure
the results are correct, is the analysis of
convergence. Detailed convergence of solution
in numerical methods can be studied in many
books in numerical methods includini].

We performed convergence studies in this
problem and results are presented-igure (6).
This resultexhibits the convergence of solution
at midpoint of the bar where the maximum
damage parameter is obseryvethkes place
beyond 10,000 time steps. Thisuld not be
predicted and theesult obtained, should be
incorporated in softion process
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Figure 6. Convergence analysis.
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3. Conclusions

1- In this paper we have used COMSOL
Multiphysics and COMSOL Script to
solve the transient rock damage problem.
We have analyzed the ndraling
process and incorporated the positive
rate of damage in the finite element
solution we obtained from COMSOL.

2- Numerical results indicate that there are
two regimes of propagation depending
on damage diffusion parametdl These
are shown in Figures (3) and (5).

3- Due to the nonlinearity of damage
problem, to obtain an accurate
converged solution, time steps have to
be very small. Our numerical results
indicatethat for the number of time steps
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beyond 10,000, the solutio gets
converged.
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